Methods and Metrics for Evaluating Novel Technologies

Edward S. Rubin

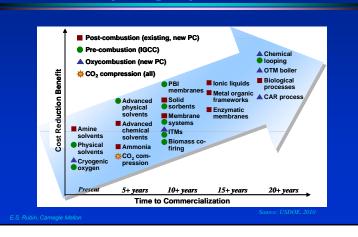
Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

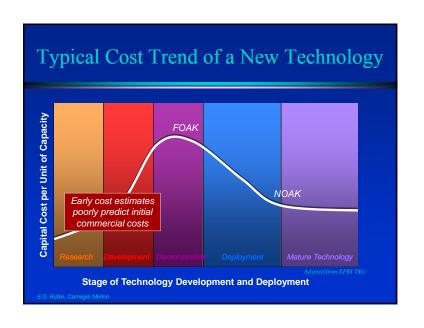
Presentation to the
IEA Workshop on Potential for Innovation in CO₂ Capture Technology
Austin, Texas
October 7, 2014

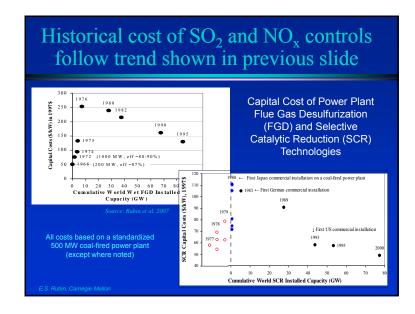
Characteristics of Novel Carbon Capture Systems

- The technology is not yet deployed or available for purchase at a commercial scale
 - Current stage of development may range from concept to large pilot or demonstration project
- Process design details still preliminary or incomplete
- Process performance not yet validated at scale, or under a broad range of conditions
- May require new components and/or materials that are not yet manufactured or used at a commercial scale

E.S. Ruhin, Carnegie Mellr

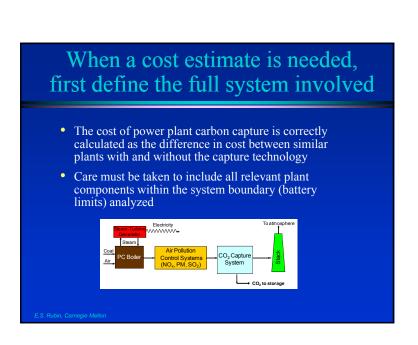

Here, "novel technology" means any notyet-commercial CO₂ capture process or power generation system employing CCS

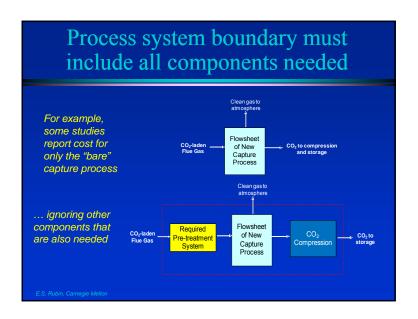

Some of these might also be labeled as:


- Advanced
- Breakthrough
- Game-changing
- Leap-frog
- Next-generation
- Radical
- Step-out
- Transformational

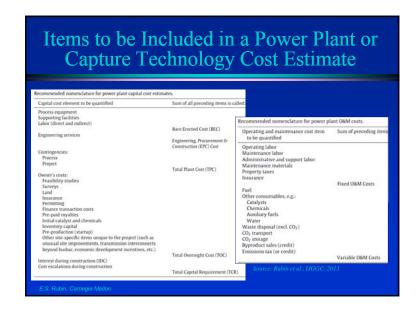
E.S. Rubin, Carnegie Mellon

Examples of Novel Technologies: Everything beyond *Present*




How can we do a better job of costing new technologies?

Avoid Cost Estimates at the Earliest Stages of Development • Don't ask about cost for new capture technologies or process concepts. Instead • Use performance metrics and other non-economic criteria to evaluate and screen novel materials, components and early-stage concepts (low TRLs), e.g. • .g. •



Use Appropriate Values of Cost Items to Estimate Full-Scale Cost

- The value of many cost items on the preceding lists depend upon the technical maturity of the process; thus, use of an appropriate value is especially important for processes at early stages of development
- This is particularly true for Process and Project Contingency Costs, which constitute a significant fraction of the total capital requirement of a project
- Currently, most cost estimates for advanced carbon capture processes ignore established guidelines for process and project contingency costs

E.S. Rubin, Carnegie Mellon

DOE/EPRI Guidelines for Project Contingency Cost

 "Factor covering the cost of additional equipment or other costs that would result from a more detailed design of a definitive project at an actual site." - EPPRI TAG

EPRI Cost Classification	Design Effort	Project Contingency (% of total process capital, eng'g. &home office fees, and process contingency)	
Class I (~AACE Class 5/4)	Simplified	30–50	
Class II (~AACE Class 3)	Preliminary	15–30	
Class III (~ AACE Class 3/2)	Detailed	10–20	
Class IV (~AACE Class 1)	Finalized	5–10	

Many Class I-III studies assume ≤10%

Source: EPRI, 199.

DOE/EPRI Guidelines for Process Contingency Cost

"Factor applied to new technology ... to quantify the uncertainty in the technical performance and cost of the commercial-scale equipment" based on the <u>current</u> state of technology.

-EPRI TAG

Current Technology Stat	Contingency Cost (% of associated process capital)
New concept with limited da	ta 40+
Concept with bench-scale d	ata 30-70
Small pilot plant data	20-35
Full-sized modules have be operated	en 5-20
Process is used commercia	lly 0-10

Most advanced capture system cost estimates assume *much smaller* process contingencies than guidelines require (e.g., zero to <20%)

SOURCE: EFRI, 1993; AACE ES Pubin Camadia Mallon

Contingency Costs Assumptions for Advanced Capture Technology

Parameter	Typical Assumption	Guideline Value*	Capital Cost Increase
Process Contingency (%TPC)	10%	~40%	30%
Project Contingency (%TPC)	10%	~30%	20%
TOTAL Contingency (%TPC)	20%	~70%	50%

*Based on proposed designs for membrane, solid sorbents, and other post-combustion processes with limited data

The total contingency cost for advanced capture processes is significantly under-estimated in most cost studies, leading to systematically low capital cost estimates relative to guidelines

E.S. Rubin, Carnegie Mellon

Illustrative Case Study Cost Results: FOAK vs. NOAK cost assumptions for a novel process

Parameter	FOAK	NOAK
Net plant power output (MW)	1,056	1,056
Capture system total capital reqm't. (\$/kW-net)	4,088	3,089
Total plant capital cost (\$/kW-net)	5,374	4,231
Levelized cost of electricity (\$/MWh)	141	103
Cost of CO ₂ avoided (\$/tonne)	105	56
Cost of CO ₂ captured (\$/tonne)	83	44

*All costs in constant 2012 US dollars

E.C. Dubin Communic Maller

Use Learning Curves to get NOAK Cost (Supplemented by Conventional Bottom-Up Analysis)

- Cost studies of advanced technologies often assume cost parameters for a mature (Nth-of-a-kind) plant in a bottomup analysis to show potential benefits of a new technology
- But research on technology innovation shows that "learning by doing" is needed to achieving cost reductions
- So to realize N^{th} -of-a-kind costs you have to build N plants
- Historical learning (experience) curves can provide an empirical estimate of expected cost reductions relative to FOAK costs as a function of technology deployment
- They can be used together with bottom-up analyses to estimate the deployment needed to achieve *N*th-plant costs

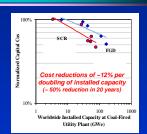
E.S. Rubin, Carnegie Mello

Step 5

One-Factor Learning (Experience) Curves are the Most Prevalent

Model equation: $C_i = a x_i^{-b}$

where

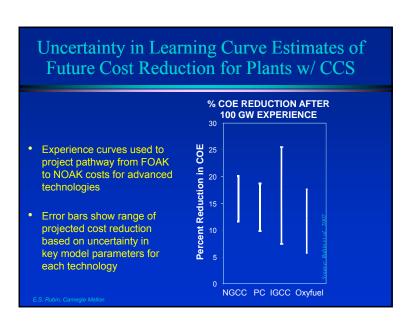

 $C_i = cost$ to produce the i th unit

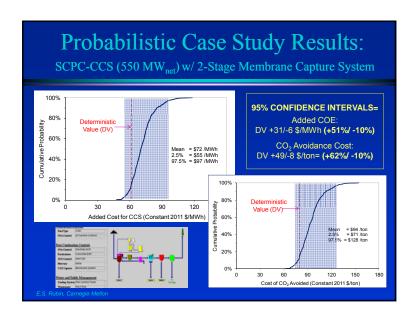
 $x_i = \text{cumulative capacity thru period } \underline{i}$

b = learning rate exponent

a = coefficient (constant)

Fractional cost reduction for a doubling of cumulative capacity (or production) is defined as the <u>learning rate</u>: $LR = 1 - 2^b$


- Most appropriate for projecting future cost of a technology that is already commercially deployed
- Application to advanced (pre-commercial) processes requires careful consideration of the "starting point" (cost and experience base) for future cost reductions


E.S. Rubin, Carnegie Mellon

Step 6

Overall Accuracy for **Conventional Costing Methods** Cost Accuracy (as a %of nominal cost) Technology Development Rating(b) E and F Α D Estimate Rating(b) Lab and Pilot Mature Commercial 0 Actual Detailed -5 to +8 -10 to +15 -15 to +25 Preliminary -10 to +15 -15 to +20 20 to +25 -25 to +40 -30 to +60 Simplified -15 to +20 -20 to +30 -25 to +40 -30 to +50 -30 to +200 Costs for advanced processes are more likely to exceed the nominal costs

Estimate and Quantify Uncertainty in Key Performance and Cost Metrics A variety of methods are available for characterizing and quantifying uncertainty, including: Overall accuracy estimates Sensitivity analysis Probabilistic estimates (based on models, data and/or expert elicitations) Quantification of uncertainties can improve cost estimates by identifying risks as well as opportunities

Report Cost Metrics that are Useful and Unambiguous

- Always report the cost year, and whether values are in constant or current dollars (the difference can be sizeable!)
- Useful cost metrics for CO₂ capture systems include (but are not limited to):
 - Added cost of electricity generation
 - Added capital cost
 - Cost of CO₂ avoided (for a clearly-defined ref plant)
 - Cost of CO₂ captured—if accompanied by cost of CO₂ avoided

E.S. Rubin, Carnegie Melli

In Summary: Seven Steps to Improve Cost Estimates for Novel CO₂ Capture

- 1. Use non-cost metrics for earliest-stage technologies
- 2. When costing a technology define the full system
- 3. Use standard costing methods
- 4. Quantify cost elements appropriately
- 5. Use learning curves when estimating NOAK costs
- 6. Characterize and quantify uncertainties
- 7. Report cost metrics that are useful and unambiguous

S Rubin Camedie Mellon

